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Abstract. Probabilistic image segmentation encodes varying prediction
confidence and inherent ambiguity in the segmentation problem. While
different probabilistic segmentation models are designed to capture dif-
ferent aspects of segmentation uncertainty and ambiguity, these mod-
elling differences are rarely discussed in the context of applications of
uncertainty. We consider two common use cases of segmentation uncer-
tainty, namely assessment of segmentation quality and active learning.
We consider four established strategies for probabilistic segmentation,
discuss their modelling capabilities, and investigate their performance in
these two tasks. We find that for all models and both tasks, returned
uncertainty correlates positively with segmentation error, but does not
prove to be useful for active learning.

Keywords: Image segmentation · Uncertainty quantification · Active
learning.

1 Introduction

Image segmentation – the task of delineating objects in images – is one of the
most crucial tasks in image analysis. As image acquisition methods can introduce
noise, and experts disagree on ground truth segmentations in ambiguous cases,
predicting a single segmentation mask can give a false impression of certainty.
Uncertainty estimates inferred from the segmentation model can give some in-
sight into the confidence of any particular segmentation mask, and highlight
areas of likely segmentation error to the practitioner. It adds transparency to
the segmentation algorithm and communicates this uncertainty to the user. This
is particularly important in medical imaging, where segmentation is often used
to understand and treat disease. Consequently, quantification of segmentation
uncertainty has become a popular topic in biomedical imaging [6, 11].

Training segmentation networks requires large amounts of annotated data,
which are costly and cumbersome to attain. Active learning aims to save the
annotator’s time by employing an optimal data gathering strategy. Some active

Code available at github.com/SteffenCzolbe/probabilistic segmentation
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Fig. 1: Segmentation uncertainty is often interpreted as probable segmentation
error, as seen near the lesion boundary in the first two examples. In the third
example, however, model bias leads to a very certain, yet incorrect segmentation.

learning methods use uncertainty estimates to select the next sample to anno-
tate [7,9,10]. While several potential such data gathering strategies exist [13,16],
a consistent solution remains to be found [8].

While several methods have been proposed to quantify segmentation uncer-
tainty [4, 6, 11], it is rarely discussed what this uncertainty represents, whether
it matches the user’s interpretation, and if it can be used to formulate a data-
gathering strategy. We compare the performance of several well-known prob-
abilistic segmentation algorithms, assessing the quality and use cases of their
uncertainty estimates. We consider two segmentation scenarios: An unambigu-
ous one, where annotators agree on one underlying true segmentation, and an
ambiguous one, where a set of annotators provide potentially strongly different
segmentation maps, introducing variability in the ground truth annotation.

We investigate the degree to which the inferred uncertainty correlates with
segmentation error, as this is how reported segmentation uncertainty would typ-
ically be interpreted by practitioners. We find that uncertainty estimates of the
models coincide with likely segmentation errors and strongly correlate with the
uncertainty of a set of expert annotators. Surprisingly, the model architecture
used does not have a strong influence on the quality of estimates, with even a
deterministic U-Net [12] giving good pixel-level uncertainty estimates.

Second, we study the potential for uncertainty estimates to be used for se-
lecting samples for annotation in active learning. Reducing the cost of data
annotation is of utmost importance in biomedical imaging, where data availabil-
ity is fast-growing, while annotation availability is not. We find that there are
many pitfalls to an uncertainty-based data selection strategy. In our experiment
with multiple annotators, the images with the highest model uncertainty were
precisely those images where the annotators were also uncertain. Labeling these
ambiguous images by a group of expert annotators yielded conflicting ground
truth annotations, providing little certain evidence for the model to learn from.

2 Modelling segmentation uncertainty

Image segmentation seeks to estimate a well-defined binary3 segmentation g : Ω →
{0, 1} for a discrete image domain Ω. Typically, a predictive model h(x,w) with

3 For simplicity, we consider binary segmentation; the generalization to multi-class
segmentation is straightforward.
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parameters w, such as a neural network, is fitted to binary annotation data
a : Ω → {0, 1} by minimizing a loss L(a, h(x,w)). Here, x ∈ RΩ is the image,
and y = h(x,w) defines an image of pixel-wise segmentation probabilities, such
as the un-thresholded softmax output of a segmentation network h.

Typically, the annotation is assumed to be error-free, that is a = g, and
predictors are typically trained on a single annotation per image. We assume
that the trained neural network h(x,w) satisfies

h(x,w) = g(x) + b+ err ,

where b and err denote bias and segmentation error. Segmentation uncertainty is
often interpreted as correlating with this error, although this is primarily realistic
for small bias. Such segmentation tasks are called unambiguous; we consider a
running example of skin lesion segmentation from dermoscopic images [3, 15],
where the lesion boundary is clearly visible in the image (Fig. 1).

Recent work has considered ambiguous segmentation tasks [6,11], where there
is no accessible “ground truth” segmentation, either because the data is not suf-
ficient to estimate the segmentation, or because there is subjective disagreement.
Examples include lesions in medical imaging, where the boundary can be fuzzy
due to gradual infiltration of tissue, or where experts disagree on whether a
tissue region is abnormal or not.

In such tasks, we make no assumption on the underlying segmentation g or
the errors err, but regard the observed annotations as samples from an unknown
“ground truth” distribution p(a|x) over annotations a conditioned on the image
x. The goal of segmentation is to estimate the distribution p(a|x), or its proxy
distribution p(y|x) over pixel-wise class probabilities y : Ω → [0, 1], as accurately
as possible for a given image x. If successful, such a model can sample coher-
ent, realistic segmentations from the distribution, and estimate their variance
and significance. As a running example of an ambiguous segmentation task, we
consider lung lesions [1, 2, 6]. For such tasks, predictors are typically trained on
multiple annotators, who may disagree both on the segmentation boundary and
on whether there is even an object to segment.

From the uncertainty modelling viewpoint, these two segmentation scenarios
are rather different. Below, we discuss differences in uncertainty modelling for
the two scenarios and four well-known uncertainty quantification methods.

3 Probabilistic Segmentation Networks

A probabilistic segmentation model seeks to model the distribution p(y|x) over
segmentations given an input image x. Here, our annotated dataset (X,A) con-
sists of the set X of N images

{
xn | n = 1, ..., N

}
, and L annotations are

available per image, so that A =
{
a
(l)
n ∼ p(y|xn) | (n, l) = (1, 1), ..., (N,L)

}
.

Taking a Bayesian view, we seek the distribution

p(y|x,X,A) =

∫
p(y|x,w)p(w|X,A, h) dw , (1)
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U-Net

h(x, ŵ)

Ensemble

h(x,w(1))

...
h(x,w(M))

h(x,w(r))

w(r) ∼ p(w; θ)

MC-Dropout

h(x, z(i), ŵ)

z(i) ∼ pprior(z|x)

Prob. U-Net

Fig. 2: Schematic overview (adapted from [6]) of the evaluated models. Blue:
residual blocks . Orange: Dropout layers essential to the networks’ functionality.

over segmentations y given image x and data (X,A), which can be obtained by
marginalization with respect to the weights w of the model h.

In most deep learning applications, our prior belief over the model h, denoted
p(h), is modelled by a Dirac delta distribution indicating a single architecture
with no uncertainty. In the context of uncertain segmentation models, however,
we would like to model uncertainty in the parameters w. Denoting our prior
belief over the parameters w by p(w|h), Bayes’ theorem gives

p(w|X,A, h) =
p(w|h)p(A|X,w, h)

p(A|X, h)
, (2)

where the likelihood update function is given by

p(A|X,w, h) = exp

(
N∑
n=1

L∑
l=1

A(l) log (h(xn,w)) + (1−A(l)) log (1− h(xn,w))

)

and normalizing constant

p(A|X, h) =

∫
p(w|h)p(A|X,w, h) dw .

This integral is generally intractable, making it impossible to obtain the
proper posterior (2). Below, we discuss how empirical approximations p̂(y|x,X,A)
to the distribution p(y|x,X,A) found in (1) are performed in four common seg-
mentation models. Note that both p and p̂ can be degenerate, depending on the
number of annotations available and models used.

U-Net with softmax output. The well established U-Net [12] architecture
with a softmax output layer yields class-likelihood estimates. As the model
is deterministic, p(h|X,A) is degenerate. Parameters are selected by a max-
imum a posteriori (MAP) estimate i.e. p(w|X,A, h) ≈ δ(w − ŵ) in which
ŵ = argmax p(w|X,A, h). The model output (1) is approximated by the degen-
erate distribution p̂(y|x,X,A) ≈ p(y|x, ŵ). The softmax output layer predicts
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a pixel-wise class probability distribution p(y(i,j)|x,X,A). As no co-variance
or dependencies between pixel-wise estimates are available, segmentation masks
sampled from the pixel-wise probability distributions are often noisy [11]. An
alternative approach followed by our implementation is the thresholding of pixel-
wise probability values, which leads to a single, coherent segmentation map.

Ensemble methods combine multiple models to obtain better predictive per-
formance than that obtained by the constituent models alone, while also allowing
the sampling of distinct segmentation maps from the ensemble. We combine M
U-Net models h(x,w(m)) where, if labels from multiple annotators are available,
each constituent model is trained on a disjoint label set A(m). When trained on
datasets with a single label, all constituent models are trained on the same data
and their differences stem from randomized initialization and training. Treating
the models as samples, we obtain an empirical distribution approximating (1)
by drawing from the constituent models at random.

Monte-Carlo Dropout [4] is a Bayesian approximation technique based on
dropout, where samples from the posterior over dropout weights give a better
approximation of the true posterior than a MAP estimation. Given a selected
model h, one can approximate (1) as p̂(y|x,X,A) ≈ 1/R

∑R
r=1 p(y|x,w(r)) when

w(r) ∼ p(w|X,A, h). Since p(w|X,A, h) is intractable, it is approximated [4] by
a variational distribution p(θ) as θi = wi · zi, zi ∼ Bernoulli(pi), where pi is the
probability of keeping the weight wi in a standard dropout scheme.

The Probabilistic U-Net [6] fuses the output of a deterministic U-Net with
latent samples from a conditional variational auto-encoder modelling the varia-
tion over multiple annotators. Test-time segmentations are formed by sampling
a latent z, which is propagated with the image through the U-Net. Predictions
are made as p̂(y|x,X,A) ≈ p(y|x, z(i), ŵ), with z(i) ∼ pprior(z|x).

4 Experiments

4.1 Data

Practical applications of uncertainty in segmentation tasks differ both in the
type of ambiguity, and the availability of expert annotations. We select two
representative datasets for our evaluation.

The ISIC18 dataset consists of skin lesion images with a single annotation
available [3,15], and is used as an example of unambiguous image segmentation.
We rescale the images to 256×256 pixels and split the dataset into 1500 samples
for the train-set and 547 each for the validation and test sets.

The LIDC-IDRI lung cancer dataset [1, 2] contains 1018 lung CT scans
from 1010 patients. For each scan, 4 radiologists (out of 12) annotated abnormal
lesions. Anonymized annotations were shown to the other annotators, who were
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Skin Lesions Lung Cancer

Image

U-Net

Ensemble

MC-Dropout

Prob. U-Net

0.2 0.4 0.6 0.8 1.00.0
Model Uncertainty (Entropy)

Fig. 3: Segmentation Uncertainty. Samples from the test set of the two datasets.
Images in row one, model uncertainty (entropy) heat-maps in rows 2-5. Outline
of mean ground truth annotations in Blue, mean model predictions in Orange.

allowed to adjust their own masks. Significant disagreement remains between the
annotators: Among the extracted patches where at least one annotator marked
a lesion, an average of 50% of the annotations are blank. We pre-processed the
images as in [6], resampled to 0.5mm resolution, and cropped the CT-slices with
lesions present to 128 × 128 pixels. The dataset is split patient-wise into three
groups, 722 for the training-set and 144 each for the validation and test sets.

4.2 Model tuning and training

To allow for a fair evaluation, we use the same U-Net backbone of four encoder
and decoder blocks for all models. Each block contains an up-/down-sampling
layer, three convolution layers, and a residual skip-connection. The ensemble
consists of four identical U-Nets. The latent-space encoders of the probabilistic
U-Net are similar to the encoding branch of the U-Nets, and we choose a six-
dimensional latent space size, following the original paper’s recommendation.

All models were trained with binary cross-entropy. The probabilistic U-Net
has an additional β-weighted KL-divergence loss to align the prior and posterior
distributions, as per [6]. The optimization algorithm was Adam, with a learning
rate of 10−4 for most models, except the probabilistic U-Net and MC-Dropout
models on the skin lesion dataset, where a lower learning rate of 10−5 gave
better results. We utilized early stopping to prevent over-fitting, and define the
stopping criteria as 10 epochs without improvement of the validation loss, 100
epochs for models trained with the reduced learning rate. For the MC-Dropout
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(a) Skin Lesion Dataset (b) Lung Cancer Dataset

Fig. 4: Pixelwise uncertainty by prediction correctness (True Positive, False Pos-
itive, False Negative, True Negative). The scatter plot shows individual pixels,
with the median circled. For the lung cancer dataset, we discarded pixels with
annotator disagreement.

and probabilistic U-Net models we performed a hyper-parameter search over
the dropout probability p and the loss function weighting factor β, selecting the
configuration with the lowest generalized energy distance on the validation set.
We arrived at p = 0.5, β = 0.0005.

4.3 Uncertainty Estimation

For all models, our uncertainty estimates are based on non-thresholded pixel-
wise predictions. For the U-Net, we take the final softmax predictions; for the
remaining models we average across 16 non-thresholded samples. We quantify
the pixel-wise uncertainty of the model by the entropy

H(p(y(i,j)|x,X,A)) =
∑
c∈C

p(y(i,j) = c|x,X,A) log2

1

p(y(i,j) = c|x,X,A)

with p(y(i,j) = c|x) as the pixel-wise probability to predict class c ∈ C. We plot
the resulting uncertainty map for random images x from both datasets in Fig. 3.
For visual reference, we overlay the mean expert annotation in Blue, and the
mean model prediction in Orange. Darker shades indicate higher uncertainty.

We quantitatively assess the quality of uncertainty estimates by examining
their relation to segmentation error in Fig. 4. On both datasets, models are more
certain when they are correct (true positive, true negative) compared to when
they are incorrect (false positive, false negative). A repeated measure correlation
test finds a significant (α = 0.01) correlation between segmentation error and
model uncertainty on both datasets, for all methods. The relation holds, but is
less strong, for MC-dropout on the skin dataset, which retains high uncertainty
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Fig. 5: Pixel-wise model uncertainty on
the lung cancer dataset, grouped by
agreement of expert annotations. Ex-
perts agree: H(p) = 0, somewhat agree
0 < H(p) < 1, disagree H(p) = 1.

Fig. 6: Generalized Energy Distance of
models on the lung cancer dataset, ap-
proximation by 1 to 16 samples, me-
dian highlighted. Lower distances are
better.

even when it is correct. On the lung cancer dataset, all models have high uncer-
tainty on true positive predictions. This might be caused by the imbalance of the
dataset, where the positive class is strongly outweighed by the background and
annotators often disagree. We tried training the models with a class-occurrence
weighted loss function, which did produce true positive predictions with higher
certainty but suffered an overall higher segmentation error.

We assess the correlation of model uncertainty with the uncertainty of the
annotators on the lung cancer dataset in Fig. 5. For all models, this correlation is
significant (α = 0.01) . The median model uncertainty is very low (< 0.1) when
all annotators agree, but high (> 0.7) when they disagree. There is a minor
difference in model uncertainty between partial agreement (annotators split 3 –
1) and full disagreement (annotators split 2 – 2).

4.4 Sampling Segmentation Masks

Fig. 7 shows segmentation masks y sampled from the trained models p̂(y|x). The
U-Net model is fully deterministic and does not offer any variation in samples.
The sample diversity of the ensemble is limited by the number of constituent
models (four in our experiment). The MC-Dropout and probabilistic U-Net allow
fully random sampling and achieve a visually higher diversity. On the skin lesion
dataset, where only one export annotation per image is available, models still
produce diverse predictions. On the lung cancer dataset, samples from the MC-
Dropout and probabilistic U-Net represent the annotator distribution well.

We measure the distance between the model distribution p̂(y|x,X,A) and
the annotator distribution p(y|x) with the Generalized Energy Distance [6, 11,
14]. The distance measure is calculated as

D2
GED(p, p̂) = 2Ey∼p,ŷ∼p̂ [d(y, ŷ)]− Ey,y′∼p [d(y, y′)]− Eŷ,ŷ′∼p̂ [d(ŷ, ŷ′)] . (3)
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Image Annotation Image Annotations

Samples Samples

U-Net
0.00 0.00

Ensemble
0.10 0.27

MC-Dropout
0.26 0.39

Prob. U-Net
0.07 0.43

Fig. 7: Samples from the probabilistic models. First row: Image and ground truth
annotations from the skin dataset (left) and lung nodule dataset (right). Follow-
ing rows: samples y ∼ p̂(y|x,X,A) drawn from the various models. Sample
diversity over the entire dataset shown next to the model name.

We use 1 − IoU(·, ·) as the distance d. A low D2
GED indicates similar distribu-

tions of segmentations. We approximate the metric by drawing up to 16 samples
from both distributions, and sample with replacement. The results are shown
in Fig. 6. We observe that the annotator distribution is best approximated by
the probabilistic U-Net, with MC-dropout and Ensemble closely behind; these
pairwise ranks are significant (α = 0.01) with left-tailed t-tests. A deterministic
U-Net architecture is not able to reproduce the output distribution. Our results
are consistent with [6], verifying our implementation. Following [11], we use the
last term of (3) to assess the diversity of samples drawn from the model and note
them in Fig. 7. They reinforce the qualitative observations of sample diversity.

4.5 Uncertainty estimates for active learning

Instead of training the models with all available data {X,A}, we now start with a
small random subset {X0,A0}. We train the model with this subset at iteration
t = 0, and then add a set of k images from {X,A} to form {Xt+1,At+1}.
Samples are selected based on the sum of pixel-wise entropies [7]. We repeat for
T iterations, benchmarking against a random sample selection strategy.

For both skin lesion and lung cancer datasets, we start with a training size
of 50 images, add k = 25 images at each iteration, and repeat T = 10 times.
The models are trained for 5000 gradient updates with a batch size of 16 and
32 for the respective datasets. Since annotations are costly and to speed up
computations, no validation-loss based early stopping is used. The experimental
setup has been picked to ensure meaningful model uncertainties for the data
selection policy and to ensure convergence within each active learning iteration.

The learning curves in Fig. 8 show that random-based sampling leads to a
faster reduction in test loss over the uncertainty-based sampling strategy for
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Fig. 8: Learning curves for the four algorithms on both datasets. Note that the
Probabilisitic U-net only applies to the ambiguous segmentation.

Image Annotator 1 Annotator 2 Annotator 3 Annotator 4

Fig. 9: An example of the ambiguous samples frequently selected for inclusion
into the training set under the uncertainty-based data gathering strategy. This
unseen sample was selected when 150 annotations were revealed. The group
of expert annotators provided disagreeing segmentation masks, confirming the
model uncertainty but providing little additional information to learn from.

both datasets. We further investigated the samples selected by the uncertainty-
based strategy by looking at the images which caused a large increase in the test
error. One such image is shown in Fig. 9.

5 Discussion & Conclusion

Our results in Fig. 4 show that there is a clear relation between uncertainty
estimates and segmentation error. The examples in Fig. 3 further highlight that
areas of high uncertainty are not merely distributed around class boundaries, but
also encompass areas with ambiguous labels. Fig. 5 shows that the uncertainty
estimates obtained from the model are a good representation of the uncertainty
of a group of expert annotators. We conclude that pixel-wise model uncertainty
estimates give the practitioner a good indication of possible errors in the pre-
sented segmentation mask, allowing those predictions to be examined with care.

The learning curves in Fig. 8 show that estimated uncertainty is not generally
useful for selecting active learning samples, for any model or dataset. Our results
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depend on using the sum of pixel-wise entropies as a per-image entropy, which is
correct for the softmax model, but only an approximation for the other models.
This might impact our results. For the Lung Cancer dataset, all models esti-
mate high uncertainty for the positive class, and the active learner thus selects
images with a large foreground, skewing the proportion of classes represented
in the training set. Furthermore, the selected images often have high annotator
disagreement, illustrated in Fig. 9. If the active learner prefers sampling am-
biguous images, it will be presented with inconsistent labels leading to harder
learning conditions and poor generalisation. This may stem from an incorrect
active learning assumption that annotations are noise-free and unambiguous,
which is often not true. In conclusion, for a fixed budget of annotated images,
we find no advantage in uncertainty-based active learning.

We observed similar behaviour of pixel-wise uncertainty estimates across all
four segmentation models. The models differ in their ability to generate a distri-
bution of distinct and coherent segmentation masks, with only the MC-dropout
and probabilistic U-Net offering near unlimited diversity (see Fig. 7). But these
models are harder to implement, more resource-intensive to train, and require
hyperparameter tuning. The choice of model is ultimately application dependent,
but our experiments show that even a simple U-net is competitive for the com-
mon task of assessing segmentation error. This agrees with [5], which compared
uncertainty quantification models for unambiguous segmentation.

Our division of segmentation tasks into ambiguous and unambiguous consid-
ers it as ”unambiguous” when a fundamentally ambiguous segmentation task is
covered by a single annotator – or potentially several annotators, but with only
one annotator per image, as for the Skin Lesion dataset. Even if the underlying
task is ambiguous, the models considered in this paper inherently assume that it
is not, as there is no mechanism to detect annotator variance when every image
is only annotated once. More fundamental modelling of segmentation ambiguity
and uncertainty thus remains a highly relevant open problem.

To conclude – is segmentation uncertainty useful? We find that uncertainty,
even in the simplest models, reliably gives practitioners an indication of areas of
an image that might be ambiguous, or wrongly segmented. Using uncertainty es-
timates to reduce the annotation load has proven challenging, with no significant
advantage over a random strategy.
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